Wekiva Parkway Section 6 – Karst Geology Challenges

Michael W. Byerly, P.E. District Geotechnical Materials Engineer FDOT District 5 Materials and Research Office DeLand, Florida

Michael B. Woodward, P.E. Principal Geotechnical Engineer WSP USA Environment & Infrastructure Inc. Jacksonville, Florida

October 17-20, 2022 Daytona Beach, Florida

Project Overview – Wekiva Parkway (SR 429)

- 25-mile, \$1.6 billion tolled expressway
- Divided into 13 project sections
- Will complete the beltway around Central Florida
- Cooperative effort between FDOT, Central Florida Expressway Authority (CFX), and the Florida's

Turnpike Enterprise

• Entire parkway expected to be open to traffic in 2023

Wekiva Parkway – Entire Alignment

Project Overview – Section 6

- Section 6 is one of 13 Wekiva Parkway (SR 429) Project Sections
- Cost: \$234 Million
- Project Delivery Method: Design-Build
- Location: Lake and Seminole Counties in Central Florida
- Project Length: Nearly 6 miles of elevated expressway and parallel service road Bridges: 18 structures with a total length of 4.7 miles
- Three Wildlife Crossings:

- Alignment crosses the Wekiva River, a National Wild and Scenic River
- Section 6: Design-build project began April of 2017; opened May of 2022

Wekiva Parkway – Section 6

Section 6 Project Team – Key Members

Bridges Over Wekiva River

Bridges Over Wekiva River

Bridges Over Wekiva River

Geology (West to East)

Karst Challenges

- Deep Organic Soil Deposits (Relic Sinkholes)
 - Five embankment areas with Low-Mobility Grout Rigid Inclusions (LMG-RI)
- Three New Sinkholes during Project
 - Two locations required compaction grouting
 - Bridge 110108 Design revised to extend bridge 200 feet
- Unpredictable Pile Driving (Relic Sinkholes)
 - Field-spliced steel and concrete piles

Karst Feature Locations

Rigid Inclusions

 Organic soil deposits (PT, typically very soft to soft) ranged from 15 to 45 ft thick, and extended to depths of 45 to 55 ft

Specialty Contractor	Earth Tech, LLC (Land O' Lakes, Florida)
Method	Low-Mobility Grouted method (LMG-RI)
No. of Locations	Five (RI-1 through RI-5)
Treatment Areas	¼ to ¾ acre each (total combined area of 2½ acres)
No. of Columns	121 to 630 columns per treatment area (total of 1,755
Column Diameter	18 inches
Treatment Depths	42 to 57 feet
Column Spacing	7 to 10 feet

- Settlement monitoring performed following embankment construction
- Measured settlements of 1 to 4.5 inches
- Majority of settlement occurred within 2 to 4 months

1... 2... 3... Sinkholes

Sinkhole No. 1 (During Field Exploration) Bridge No. 110108

Bridge No. 110108 - Solution

Bridge No. 110108

Bridge No. 110108

Sinkhole No. 2

- Dimensions: 10-ft diameter, 12-ft depth
- Occurred at a height of 1/3 of final grade

Sinkhole No. 2 – Typical CPT Log

Sinkhole No. 2 – Compaction Grout Points (planned)

Sinkhole No. 2 – Compaction Grout Points (actual)

Sinkhole No. 2 – Compaction Grouting Quantities

Sinkhole No. 3

- Dimensions: 6-ft diameter, 10-ft depth
- •Service Road recently opened to traffic

Sinkhole No. 3 – Typical CPT Log

Sinkhole No. 3 – Compaction Grout Points (planned)

Sinkhole No. 3 – Compaction Grout Points (actual)

Sinkhole No. 3 – Compaction Grouting Quantities

<2.5

yd³

100

Note: Italics indicate the pea-gravel grout mix was used (Points 10B, 13B, and 13A)

10-30

vď

30-100

vd³

5-7.5

yd³

2.5-5

yd³

7.5-10

yd³

Compaction Grouting Program Summary

	Sinkhole No. 2	Sinkhole No. 3
Grout Points	274	207
Lin. Ft. of Casing	13,962 ft	14,088 ft
Depths (min / max / avg)	31 / 74 / 51 ft	41 / 130 / 69 ft
Grout Quantity Range/Point	<1 to 184 cy	1.5 to 174 cy
Total Grout Quantity	3 <i>,</i> 140 cy	5,370 cy
Duration	4½ months	4 months
Approx. Area Covered	7,100 sf	16,000 sf

Wildlife Crossing 2 Challenges

Three Parallel Bridges:

Bridge Nos.	110110, 110111, 110112
Length	3,860 feet
No. of Spans	38 per bridge
Pile Size/Type	24-inch Square Prestressed Concrete
No. of Piles/Bent	5 to 7
Typical NBR	720 to 774 kips

Looking west along Wildlife Crossing 2

Bridge No. 110112 Bent 36 - Solution

- Original Design
 - 5 Piles
 - NBR = 774 kips
- <u>Re-Design</u>
 - 6 Piles (2 spliced)
 - 2 Piles Abandoned
 - NBR ranged from 502 kips to 774 kips

Bent 36

And then there was Bridge No. 110110 Bent 3...

Original design: seven piles total

- Six installed to consistent tip elevations
- One...not so much

Original Design Boring data, pile driving results, configuration

<u>1st Design Revision</u> Configuration, pile driving results

Construction-phase borings drilled

2nd Design Revision Boring data, configuration, pile-driving results

<u>3rd Design Revision</u> Configuration, pile-driving results

4th Design Revision Final configuration, pile driving results

Bridge 110110 Bent 3 Design and Construction Summary

- 6 Additional Piles Driven
- 4 Piles Abandoned
- 3 Piles Spliced in the Field (2 Concrete, 1 Steel)
- Pile Installation Took 14 Months Instead of 1-2 Days
- Pile Cap Redesigned to Accommodate Cantilever

Bridge 110110 Bent 3

Bridge 110110 Bent 3

Bridge 110110 Bent 3 (An early redesign option that was rejected)

Summary of Unanticipated Impacts

- Design and Construction Changes
 - Multiple Bridges Required Unplanned Spliced Piles
 - Two Sinkholes Required Compaction Grouting
 - Bridge 110108 was Lengthened 200 feet
 - Bridge 110112 Bent 36 was Re-Designed One Time
 - Bridge 110110 Bent 3 was Re-Designed Four Times
- Additional Cost: \$6.023M (+2.57%)
- Additional Time: 208 Days (+10.99%)

Conclusions

- Solutions do not involve quick fixes
- Additional subsurface exploration needed when dealing with unforeseen conditions
- Redesign may be needed
- Extreme variability in subsurface conditions can make it difficult to predict pile lengths
- Such uncertainties can result in time delays that impact costs and construction schedule
- Close collaboration between team members is needed to develop appropriate solutions
- Expect surprises

Unintended Use of a Wildlife Crossing???

Acknowledgements

Superior Construction Company

- Jhon Beltran
- Garrett Jones, P.E.

WGI

- Rob Woodruff, P.E.
- Sarah Moore, P.E.
- Carlos Campos, P.E.

WSP USA

- Stephanie Setser, P.E.
- John Teague
- James Patterson
- Bon Lien, Ph.D., P.E.
- James Horton, P.E.

Independent Drilling

- Beverly Price
- Jonathan Wilkerson

FDOT District 5

- Bill Fox, P.E. (S&ME)
- Rick Vallier, P.E.

RS&H

- Bill Downey, P.E.
- Rob Bennett, P.E.
- Nick Everson, P.E.

GRL Engineers

- Mohamad Hussein, P.E.
- Brian Mondello, P.E.

Foundation & Geotechnical Engineering

- Chris Lewis, P.E.
- Larry Spears, P.E.

Earth Tech

- Michael Simpson, P.E.
- Kevin Johnson, Ph.D., P.E.